



Fig. S1. Characterization of the *FabI* strain. (A) Growth curves of W1536 8B and derivatives. The optical density (OD) values at 600 nanometers are presented as solid lines and molar glucose concentrations as dotted lines. A typical result is shown (B) Dilution series of W1536 5B and derivatives were spotted on solid respiratory glycerol-containing SCG media and fermentable glucose-containing SCD media.

Fig. S2. Example of synthetic petite growth phenotype. The growth characteristics of $mrps5\Delta$ and $FabI \, mrps5\Delta + \text{YCp}111MRPS5$ (W1536 5B and FabI), $\text{YCp}lac111 \, (mrps5\Delta)$ and $FabI \, mrps5\Delta$) or $\text{YCp}111mrps5-1 \, (mrps5-1 \, and \, FabI \, mrps5-1)$ were compared were compared on solid respiratory glycerol-containing SCG and fermentable glucose-containing SCD media.

Fig. S3. mRNAs levels of heme-regulated *ANB1/TIF51A* in wild-type, mtFAS and lipoylation defective strains. mRNA levels were estimated by Northern blot analysis as described (Kastaniotis *et al.*, 2000). Actin was used as a loading control. No heme-repressed *ANB1* mRNA, which is slightly shorter than the *TIF51A* message and is visible under de-repressing conditions just below the *TIF51A* band, could be detected in any of the mtFAS defective or lipoylation deficient strains even after prolonged exposure or increased loading. The figure is representative of three independent experiments.

Table S1. Genes identified by mutations that exacerbate a partial mitochondrial fatty acid synthesis pathway deficiency.

Gene	Systematic	name Mutation	Function		
Mitochondrial fatty acid synthesis pathway					
CEM1	YER061c	G503A → G168D	Mitochondrial β-ketoacyl synthase		
		G1094A → G365D*2			
		G1258A → A420T			
HFA1	<i>YMR207c</i>	C-273T → Q-91STOP	Mitochondrial acetyl-coenzyme A carboxylase		
		G560A → G187D			
		G5459A →1820STOP			
		G5600A → G1867E			
		G5753A → G1918E			
HTD2	YHR067w	G3T → M1I Mi	tochondrial 3-hydroxyacyl-thioester dehydratase		
Post-transcriptional gene expression					
MEF1	YLR069c	G1192A → G398R	Mitochondrial translation elongation factor		
MRPL16	YBL038w	G197A → G66E	Mitochondrial ribosomal protein, large subunit		
MRPS5	<i>YBR251w</i>	G545A → G182E	Mitochondrial ribosomal protein, small subunit		
MSS116	YDR194c	G1355A → G452D	Mitochondrial splicing system		
RSM22	<i>YKL155c</i>	A1559G → E520G	Mitochondrial ribosomal protein, small subunit		
Lipoic acid metabolism					
KGD1	YIL125w	G2212A → E738K	Mitochondrial α -ketoglutarate dehydrogenase		
LIP3	<i>YJL046w</i>	G873A →W291STOP	Mitochondrial lipoate-protein ligase		
Pyruvate dehydrogenase complex bypass					
ALD4	YOR374w	G572T → W191L	Mitochondrial aldehyde dehydrogenase		
Transcription factors					
ASK10	YGR097w	G3139A → G1047S	Transcription factor, oxidative stress response		

Table S2. The statistics of the synthetic petite screen.

Phase of the screen	W1536 5B (a) FabI	W1536 8B (α) <i>FabI</i>	Total	Survivors (%)
Colonies (control)	32 840	27 700	60 540	100
Colonies after mutagenes	is 11 440	9 500	20 940	35
Red colonies	111	52	163	0.27
Candidates	65	33	98	0.16
Growth deficiency on SC	G 41	30	71	0.12
YCp22ETR1 complemen	ted 27	12	39	0.06
YEpFAM1-1 suppressed	5	1	6	0.01

Table S3. Cytochrome *c* oxidase (COX), NADH cytochrome *c* reductase (NCCR), succinate cytochrome *c* reductase (SCCR), and ATPase activity in mitochondrial extracts*.

Strain	COX	NCCR	SCCR	ATPase**
W1536 5B	$3.4 \pm 0.1 \ (n=3)$	$2.9 \pm 0.03 \; (n = 3)$	$7.0 \pm 0.9 \; (n = 4)$	$1.1 \pm 0.1 \ (n=3)$
lip2∆	$2.6 \pm 0.2 \; (n = 3)$	$2.8 \pm 0.2 \ (n = 3)$	$2.7 \pm 0.5 \; (n = 4)$	$1.1 \pm 0.04 \ (n = 3)$
lip3∆	$1.3 \pm 0.3 \; (n = 3)$	$1.6 \pm 0.5 \; (n = 3)$	$1.8 \pm 0.4 \ (n=3)$	$1.1 \pm 0.03 \; (n = 3)$
gcv3∆	$1.7 \pm 0.2 \; (n = 3)$	$1.6 \pm 0.1 \ (n = 3)$	$2.9 \pm 0.1 \ (n = 6)$	$1.1 \pm 0.04 \ (n = 3)$
etr1∆	$0.6 \pm 0.2 \; (n = 3)$	$1.5 \pm 0.1 \ (n = 3)$	$2.8 \pm 0.3 \; (n=3)$	$0.67 \pm 0.07 \; (n = 3)$

^{*}COX activity is expressed as nanomoles of substrate oxidized per min \times mg⁻¹ of mitochondrial proteins, NCCR and SCCR activities are expressed as nanomoles of substrate reduced per min \times mg⁻¹ of mitochondrial proteins and ATPase activity is expressed as micromoles of phosphorus released per min \times mg⁻¹ of mitochondrial proteins. Data are represented as the mean of at least three measurements \pm SD.

^{**}ATPase activity of *etr1*△ was measured against different W1536 5B wild-type controls. This has been taken into account in Figure 2.

Table S4. Cytochrome *c* oxidase (COX) activity in mitochondrial extracts*.

Strain	COX
iW303-1A	$3.3 \pm 0.1 \ (n = 3)$
ietr1∆	$0.4 \pm 0.1 \ (n=3)$
$ietr1\Delta + mss51$ F1991	$3.3 \pm 0.3 \; (n = 3)$
ietr1∆ + MSS51	$1.5 \pm 0.1 \ (n = 3)$

^{*}COX activity is expressed as nanomoles of substrate oxidized per min \times mg⁻¹ of mitochondrial proteins. Data are represented as the mean of at least three measurements \pm SD.

 Table S5. Antisense probes for northern blotting.

Name	Sequence	Reference	
COXI	5`-TCACCACCTCCTGATACTTCAAA-3`	(Stribinskis et al., 2001)	
COX2	5`-GATACTAAACCTAAAATAACTAAT-3`	(Stribinskis et al., 2001)	
CYTB	5`-CCTCTTACTACACTTCTATCAGTAAATGG-3`	This study	
RPM1	5`-ACTTTTTATTAATATATATATATGGACTCCTGC	(Schonauer et al., 2008)	
	GGGG-3`		
SCR1	5`-GTCTAGCCGCGAGGAAGG-3`	(Schonauer et al., 2008)	

Additional Results

The growth of the FabI strains was indistinguishable from wild-type strains on glucose (Fig. S1A). When FabI strains were grown in SCD medium supplemented with triclosan, they grew as well as the wild-type up to the diauxic shift, at which point the growth ceased. While the $etr1\Delta$ strain and the FabI strain supplemented with triclosan ceased growth at approximately the same time point (24 hours), the deletion strain overtook the FabI strain after 20 hours and stopped growing at a higher OD (~ 6.0 in $etr1\Delta$ compared to ~ 4.5 in FabI). The higher OD value of the $etr1\Delta$ strain could be explained possibly by different light scattering of the cells (Torkko et al., 2001) as the wet weight of the cells were less than in the case of wild-type or FabI.

The *FabI* strain is indistinguishable from wild-type on glucose (Fig. S1B), but grows slower on glycerol and is inhibited by triclosan under respiratory conditions in a concentration-dependent manner (lower panels).

No heme-repressed *ANB1* mRNA could be detected in any of the mtFAS defective or lipoylation deficient strains (Fig. S3), which is consistent with only a very mild heme deficiency sensed by the cells. It was previously shown that even a seven fold de-repression as measured by the *ANB1-lacZ* reporter barely can be detected by northern blotting (Kastaniotis *et al.*, 2000).

References

Kastaniotis A.J., Mennella T.A., Konrad C., Torres A.M., and Zitomer R.S. (2000) Roles of transcription factor Mot3 and chromatin in repression of the hypoxic gene ANB1 in yeast. *Mol Cell Biol* **20**: 7088-7098.

Schonauer M.S., Kastaniotis A.J., Hiltunen J.K., and Dieckmann C.L. (2008) Intersection of RNA processing and the type II fatty acid synthesis pathway in yeast mitochondria. *Mol Cell Biol* **28**: 6646-6657.

Stribinskis V., Gao G.J., Ellis S.R., and Martin N.C. (2001) Rpm2, the protein subunit of mitochondrial RNase P in saccharomyces cerevisiae, also has a role in the translation of mitochondrially encoded subunits of cytochrome c oxidase. *Genetics* **158**: 573-585.

Torkko J.M., Koivuranta K.T., Miinalainen I.J., Yagi A.I., Schmitz W., Kastaniotis A.J., *et al.* (2001) Candida tropicalis Etr1p and saccharomyces cerevisiae Ybr026p (Mrf1'p), 2-enoyl thioester reductases essential for mitochondrial respiratory competence. *Mol Cell Biol* **21**: 6243-6253.